Sigi H.<sup>1, 2</sup>, Ya Z.<sup>2</sup>, Long B.<sup>1, 2</sup>, Emily F.<sup>3</sup>, and Orlando J. R.<sup>1, 2</sup>

## Engineering Pickering emulsions with cellulose and chitin nanofiber complexes

1 Dr. Siqi H., Dr. Long B. and Prof. Dr. Orlando J. R., Department of Chemical & Biological Engineering, Chemistry, Wood Science, 2360 East Mall, University of British Columbia, Vancouver, BC V6T 1Z3, <a href="mailto:siqi.huan@ubc.ca">siqi.huan@ubc.ca</a>, <a href="mailto:long.bai@ubc.ca">long.bai@ubc.ca</a> and <a href="mailto:srq.huan@ubc.ca">orlando.rojas@ubc.ca</a>

2 Dr. Siqi H., Ya Z., Dr. Long B. and Prof. Dr. Orlando J. R., Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aato, Espoo, Finland, <a href="mailto:siqi.huan@ubc.ca">siqi.huan@ubc.ca</a>, <a href="mailto:ya.zhu@aalto.fi">ya.zhu@aalto.fi</a>, <a href="mailto:long.bai@aalto.fi">long.bai@aalto.fi</a>, <a href="mailto:orlando.rojas@aalto.fi">orlando.rojas@aalto.fi</a>

3 Emily, F., Department of Chmical &Biomolecular Engineering, NC State University, Raleigh, NC 27695-7905, USA, <a href="mailto:efacthi@ncsu.edu">efacthi@ncsu.edu</a>

## **Abstract**

Naturally-derived chitin nanofiber (ChNF) is a promising biobased, green, efficient Pickering stabilizer due to its capability to enable oil/water interfacial super-stabilization at low concentration. However, chitin-based emulsions tend to flocculate and coalesce under harsh environmental stresses (high pH and salt) because of their positively-charged nature. In this study, we used negatively-charged cellulose nanofibril (CNF) to modify ChNF electrostatically, achieving super-stable Pickering emulsions with high pH and salt tolerance. Pickering systems with tunable droplet diameter and stability against oil coalescence and creaming during long-term storage were controllably achieved. The stability of emulsions against environmental stresses (pH and salt) was demonstrated under pH range of 3 to 11 and salt concentration range of 100 to 500 mM. Our study paves a way for the efficient use of all biobased materials on developing green Pickering multiphase systems in applications of foodstuff, cosmetics, and pharmaceuticals.

## **KEYWORDS:**

Chitin nanofiber Cellulose nanofiber Pickering emulsion pH resistance Salt resistance



## **Biography**

Siqi Huan is a postdoc in University of British Columbia. Her current research interest includes developing emerging manufacture techniques (including 3D-printing, electrospinning, multiphase templating) to design and create multifunctional bio-based materials with advanced architectures.

